If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+x-5=0
a = 7; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·7·(-5)
Δ = 141
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{141}}{2*7}=\frac{-1-\sqrt{141}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{141}}{2*7}=\frac{-1+\sqrt{141}}{14} $
| 5q+3.57=4.3q-5.04 | | x+18x+60=180 | | 2=(6+4n)/7 | | 5(4)^x=550 | | -3(x+4)+3=5(x+4)+5 | | 11y+18=-9+12-4y | | 412÷s=28 | | 2d/3=4/7 | | 2x+5=88 | | y^2-28y=39 | | 11y+18=-9 | | 3x2-4x=-60 | | 6x2+36x=216 | | 7n-(5n+1)=4n-(n-6) | | 5^16=25^7x-11 | | 73/7^2+b(3/7)-5=0 | | (6x+5)+43=180 | | 4a^2-3a-7=0 | | 6x+3=9+4x | | 4^x-1=0 | | -4=a-6 | | 3g^2-38g-13=0 | | 1/4a=17/8 | | 45-1.99p=68.88 | | (2x)^{-2}-5x^{-1}-3=0 | | 3x^2-5x-216=0 | | 4-2.50m=21.50 | | j^2-4j-12=0 | | -4(x-1)=2(×-4) | | 3y^2+43y+14=0 | | 28-2x=6 | | 1/2x+6=3/4 |